Читаем без скачивания Физика без камней в голове - Э. Серга
Шрифт:
Интервал:
Закладка:
Влияние космического вакуума как среды происходит на фоне более сильных гравитационных возмущений от других планет, и оно может быть причиной векового смещения перигелиев планет. Тогда аномальное смещение перигелия Меркурия и других планет можно объяснить влиянием вакуума в рамках теории Ньютона, если учесть факторы, которые ранее не были известны Эйнштейну и другим исследователям, занимавшимся этой проблемой. Это свойства вакуума как материальной среды и движение Солнца в космическом пространстве. Совокупное влияние этих возмущающих факторов приводит к возникновению космического ветра, который, как показано автором, вызывает вековое изменение долготы перигелиев планет.
Другой полученный Лапласом и использованный автором результат связан с определением скорости распространения гравитации. Нижний предел был установлен Лапласом в 1787 г. Исследовав причины векового ускорения Луны, он сделал вывод о том, что скорость гравитации υg не менее чем в 50 млн. раз превышает скорость света. Следует отметить, что здесь важна не точность полученной Лапласом величины υg, а обоснование того, что скорость гравитации на много порядков превышает скорость света. Если учесть, что весь опыт расчётов положения планет в небесной механике базируется на статической формуле Ньютона, подразумевающей бесконечную скорость гравитации, следует считать оценку Лапласа более верной, нежели постулированное Эйнштейном значение υg, равное скорости света.
Джеймс Клерк Максвелл (1831 – 1879)
Максвелл был убежден в существовании материальной среды, через которую распространяются взаимодействия между телами. Вот, что он писал в своем Трактате об электричестве и магнетизме:
«Во всех теориях естественно встает вопрос: если нечто передается от одной частицы к другой на расстоянии, то каково его состояние после того, как оно покинуло одну частицу, но еще не достигло другой? Если это нечто есть потенциальная энергия двух частиц, как в теории Неймана, то, как мы можем понять существование этой энергии в точке пространства, не совпадающей ни с той, ни с другой частицей? Действительно, как бы энергия не передавалась от одного тела к другому во времени, должна существовать среда, в которой находится энергия, после того, как она покинула одно тело, но еще не достигла другого, ибо энергия, как отмечал Торичелли, есть квинтэссенция такой тонкой природы, что она не может содержаться в каком-либо сосуде, кроме как в самой сокровенной субстанции материальных вещей. Следовательно, все эти теории ведут к понятию среды, в которой имеет место распространение, и если мы примем эту гипотезу, я думаю, она должна занять выдающееся место в наших исследованиях и следует попытаться построить мысленное представление её действия во всех подробностях; это и являлось моей постоянной целью в настоящем трактате» [13, с. 380].
Логика умозаключений Максвелла о существовании материальной среды как переносчика взаимодействий между телами соответствует современным знаниям о физическом вакууме, материальность которого проявляется в вакуумных эффектах квантовой теории поля и существовании квантовых жидкостей, известных в физике конденсированных сред. Эти жидкости по своим свойствам подобны свойствам физического вакуума. Современные представления физики конденсированных сред позволяют объяснить сочетание в физическом вакууме свойств пустого пространства и плотной упругой среды.
Генрих Герц (1857 – 1894)
.Одно из основных достижений учёного – экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц построил электродинамику движущихся тел. В книге «Принципы механики» (1894) он дал вывод общих теорем механики и её математического аппарата, исходя из единого принципа (принцип Герца).
Особенно следует отметить, что Герц наиболее близко подошел к пониманию природы сил инерции. В своей механике он связывает силы инерции с мировым эфиром, частицам которого приписывает свойства обычной инертной материи [14]. Как и Максвелл, он связывал действие сил на расстоянии с процессами, происходящими в мировом эфире. Впоследствии это положение было отвергнуто академической наукой, так как вошло в противоречие со специальной теорией относительности, несовместимой с концепцией эфира. Однако теория Эйнштейна не внесла ясности в представления о природе сил инерции, а попытки втиснуть релятивистские воззрения в рамки классической механики ещё более запутали этот вопрос.
Важно отметить, что после создания теории относительности появились данные, подтверждающие предвидение Герца о свойствах эфира как материальной среды. К ним относятся различные вакуумные эффекты, в которых эфир (вакуум физический) проявляет себя как материальная среда. Открытие явления сверхтекучести жидкого гелия (Капица, 1938) положило начало новому направлению – физике конденсированных сред. Оказалось, что сверхтекучий жидкий гелий можно рассматривать как аналог физического вакуума. Важным, но ещё не совсем осознанным современной наукой следствием теории Герца, является то, что движение материальных тел в вакууме отличается от движения в пустом пространстве. Это относится, в частности, к небесной механике и современной космологии.
Конец ознакомительного фрагмента.
Примечания
1
В третьем столбце приведены значения произведения смещений на эксцентриситет, как сделано в работе [10].